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Abstract 

The supersonic flow past a thin straight circular cylinder is investigated. The asso- 
ciated boundary layer flow (i.e. the velocity and temperature field) is computed; the 
asymptotic, far downstream solution is obtained, and compared with the full numerical 
results. 

The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is 
also studied. A so called “doubly generalized” inflexion condition is derived, which is 
a condition for the existence of so called “subsonic” neutral modes. The eigenvalue 
problem (for the complex wavespeed) is computed for two freestream Mach numbers 
(2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of 
the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature 
is introduced, whilst the second (and generally the most important) mode suffers a 
substantially reduced amplification rate. 

‘This research was suppported by the National Aeronautics and Space Administration under NASA 
Contracts No. NAS1-18605 and NAS1-18107 while the author was in residence at the Institute for Computer 
Applications in Science and Engineering (ICASE,), NASA Langley Research Center, Hampton, VA 23665 
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has rekindled the general research effort into supersonic 

flows. One of  the key areas of aerodynamic study is that 

1. Jntroduct ion 

The current and proposed development of high speed flight vehicles 

and hypersonlc 

of boundary 

compress i ble 

ties are all 

1 aye r s t ab i I i t y/t rans i t i on t o t ur b v  

flow, Tollmien-Schlichting, Cortler 

poss i bl e. 

The problem of the -stab1 1 1  ty of 

ence. In the case of 

nnd inviscid instabi 1 

axisymnetric flows is of obvious 

relevance to flight vehicles, for example to the flow over fuse1,ages 

and engine cowlings. In a recent paper Duck and Hall (1988a) used 

triple-deck theory to consider the linear (and weakly non-linear) 

viscous instability of an axisynnnetrtc boundary layer in a supersonic 

flow to axisymrnetric instabilities. I t  was found that viscous modes 

can exist in pairs (1.e. for a given body radius, there exist two neutral 

wavenumbers with two corresponding wavespeeds), and that at a given Mach 

number such modes occur only for a body radius less than a critical 

value (dependent on Mach number). 

In a second paper, Duck and Hall (1988b) went on to consider 

non-axfsymnetric disturbances. These were generally found to be more 

important than axisymmetric viscous mode,s (possessing generally larger 

growth rates and occuring at larger body radii), whilst again i t  was found 

that neutral modes existed in pairs at body radii less than some 

critical value (dependent on the Mach number and azimuthal wavenumber). 
i 

However I t  is generally found In the case of supersonic flows that 

inviscid disturbances are more important than viscous disturbances 

(this Is in contrast to incompressible flows where viscous 

instabilities are generally dominant). 

One of the earliest attempts to study tnvtscid compressible s t a b i l i t y  

was made by K'khemann (1938) ;  in this study, the temperature gradient 



-2 -  

and the curvature o.f velocity profile (together with the effects of 

viscosity) were both neglected, assumptions which i t  turns out cannot 

be properly Justified. The work that provided a key to understanding 

this type of instability was Lees and Lin (1946), in which a rational 

asymptotic approximation was developed, analogous to the incompressible 

work of Lin (1945). I t  was found that the quantity 

ay* [P 31 
surface, y* the coordinate normal to the surface, and p* the fluid 

density) plays a key role, very similar to that of 

incompressible theory, and as such may lead to a "generalised inflexion 

point" type of instability if this quantity is zero. I t  was shown that 

unlike incompressible Blasius type layers, the flat plate compressible 

boundary layer can be unstable to purely inviscid modes. This 

(two-dimensional) work on compressible boundary layer was then extended 

to three dimensions by Reshotko (1962). 

* au* (where U* denotes the velocity tangential to the a - 

a2u*/ay*2 in 

However the major differences between incompressible and 

compressible theory were not fully uncovered until extensive numerical 

calculations were possible. The first of these, by Brown (1962), was 

followed by a series of computational studies by Mack (1963, 1964, 

1965a,b, 1969, 1984, 1987). A further important difference with 

incompressible results was then revealed, namely that compressible 

theory predicts an infinite sequence of additional modes. These are 

referred to as higher modes, and are of great Importance for boundary 

layers since i t  is the first of these (the so-called second mode) that 

is then most unstable according to inviscid theory. 

In the light of this numerical work, the prediction of Lees (1947), 

that cooling the wall acts to stabilize the boundary layer, turns out 

to be a little misleading (cooling can actually destabilise the flow, 



according to Mack 1969, 1984, 1987); in this case, although 

the "generalised Inflexion point" of the profile may disappear with 

cooling, these additional modes persist. 

In the light of this work on planar boundary layers, we now turn 

to conslder the inviscid axisymmetric stabillty of the boundary layer 

on a straight circular cylinder, the generators of the cylinder lying 

parallel to the flow. In particular we wish to investigate the effect 

curvature plays on the stability of the flow, and so we postulate 

that (generally) the r dlus of the body I s  of the same order of 

thickness as the boundary layer. Consistent with this we choose to 

prescribe planar conditions at the "leading edge" of the cylinder, 

although the techniques to be described could be readily 

extended to other leading edge conditions (e.g. "rounded tips"). This 

approach may be fully justified if we restrict our attention to thin 

cylinders. 



2 .  Eau at ions of  mot ion/statt 

We take the z* axis to coincide with the axis of the cylinder, 

r* the radial coordinate, and e the azimuthal angle. a* Is 

the radius of the cylinder, which is taken t o  be independent of both 

z* and 8 .  The velocity vector is taken to be v* - - (vl, v2, v3) in 

the (r*, 8 ,  z*) directions respectively, and T* t o  be the 

temperature of the fluid. Throughout we assume the flow to be completely 

independent of 8 ,  and i t  is also assumed that the azimuthal velocity 

component 

of continuity, momentum and energy, are, respectively (see Thompson 1972) 

* * *  

* 
v2 - 0. The (full) equations (in the cylindrical system) 

.. .. 
* 

(P* v3) - 0, ( 2 . 1 )  - + - (p *  vl) + - + - aP* a * p v i  a 
at* ar* r* az* 

(2.3) ap* a L* r* a L* z* + L* r* p * - - - - +  + 
Dt * aZ* ar* az* r* ' 

* aT* a * a* 
Dt * r* ar* ar a=* at* (K* r T )  + - (K -1. (2.4) (cp T*) - 2 - r* + - - I* a D 

Dt * P* - 

Here p* denotes the density of the fluid, p* the pressure, cp 

the specific heat at constant pressure, 

conductivity. The Eulerian operator is defined as 

K* the coefficient of heat 

D a + a  * a  -*---+v - + v  
Dt* at*  1 ar* 3 2' 

and the viscous stress components (assuming Newtonian flow) are 

(2.5) 
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- *  
( A *  - a*) v . v* ,  

3 dV - 2$ - + 3 - cz*z* az* 

1 dV d V  * * - c * * - c  * 3  [-+-I* 
ar* az* c r  z z r  

The dispersion function r* is defined to be 

( 2 . 9 )  

where the rate-of-deformat ion tensors are 

avy - -  
Dr*r* at-*' 

* * 

Dr*z* 

( 2 . 1 0 )  

( 2 . 1 1 )  

( 2 . 1 2 )  

p* denotes the first coefficient of viscosity, and A* the second 

coefficient of viscosity ( - 1.5 x p * ) .  

We now go on to assume a perfect gas equation of state, namely 

p* - p* R* T*, ( 2 . 1 3 )  

(where R* is the gas constant). We also assume that p* is 
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solely a function of T* (to be prescribed later). 

The surface of the cylinder lies along r* - a*, z* 

wh ch we assume v* - 0. We also assume the surface of 

is insulated, and so 

- - 

- 0. aT* - 
ar* I r*-a* 

> 0 ,  

he cy 

a 1 ong 

1 nde r 

( 2 . 1 4 )  

Conditions at z - 0 must be specified. For the purposes of this 

paper, we assume that the boundary layer at z - 0 has zero thickness 

(implying planar conditions prevail); 

by Seban and Bond (1951) and their comnents regarding this assumption 

are valid here .  Further, since the cylinder is taken to be straight 

and thin, to leading order the far field is taken to be uniform, with 

velocity vector (0, 0, U r n ) .  

the following section we go on to consider the basic boundary layer flow 

on the surface of the cylinder, obtained by an approximation of the 

governing equations detailed above. 

a similar assumption was made 

* 
The problem is now finally closed, and in 



-7- 

3. The basic flow. 

1 0  

Here we consider the steady boundary layer approximation for 

the basic flow, derived from equatlons (1.1) - (1.4). A fundamental 

(and important) component of this paper is the inclusion of curvature 

terms in the governing equations; we achieve this by generally taking 

the body radius to be of the same order as the boundary layer thickness 

(a similar approach was adopted by, for example, Seban and Bond 1951, 

Glauert and Lighthill 1955, Stewartson 1955, Bush 1976 and Duck and 

Bodonyf 1986). 

With the formation of a thin boundary layer, (comparable in thickness 

to the body radius) we expect the following classical assumptions to hold 

a >> - a - 
ar* az* ' 

and 

v3* >> V I * ,  

(these orders will be made more precise shortly). Equations 

(1.1)-(1.4) then reduce to 

a * *  

Q -  0, 
ar* 

* aT* 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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The last of these equations assumes cp to be a constant. Notice that 

the pressure is everywhere uniform on account of (3.&), together with 

our inherent assumption that the body radius is of the same order as 

the boundary layer thickness, i.e. very thin. 

One important consequence of ( 3 . 4 )  is that the equation of state may 

be written In the following form 

* *  P*T* - P, T, , ( 3 . 7 )  

where subscript denotes freestream conditions. 

I t  is now convenient to introduce non-dimensional quantities 

(v~,v~,~,z,T,P,P) 

- (Re vl*/U,*, v3*/Um*, r*/a , Re-lz*/a, T*/Tm*, p*/pm* p * / k * )  , ( 3 . 8 )  

where Re is the Reynolds number, based on body radius a*,  namely 

* * *  u.n a Pm Re - , 
k* 

which must be assumed la 

be valid. 

Equations ( 3 . 3 )  - ( 3  

non-d i me 4;s i ona I form 

(3.9) 

ge if the assumptions (3.1) and (3.2) are to 

6) may then be wr tten in the following 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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Here c is the Prandtl number, namely 

u - *, (3.14) 

which In this paper we shall assume to be a constant; y is the ratio 

of specific heats, and M, the Mach number, namely 

The boundary conditions are 

VI - v3 - 0 on r - 1, 

(3.15) 

(3.16) 

To close the problem formally, we require a relationship linking 

p to T. Here we take the simplest form, namely the linear Chapman 

law (Stewartson 1964), 

CC - T, (3.17) 

although, here, conceptually, there would be no difficulty incorporating 

a more complex viscosity/temperature law. 

3.2 Numerical solution 

As z + 0 we specify ( I )  the solution approaches planar conditions 

(Stewartson 1964) and so we expect the solution to become singular. 

This latter condition renders the problem in its present form 

inappropriate for numerical treatment. Instead we write , 
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(3.18) 

with f - ~ f ,  (3.19a) 

7 - (r-l)/f. (3.19b) 

The "hatted" functions are now expected to be completely regular 

as f + 0, approaching their planar counterparts. Equations (3.10), 

(3.12), (3.13) then become, respectively 

1 , .  n n  

+ f 'IT,, v3 - ffv3 Tf +ra - 0, 

subject to 

(3.20) 

(3.21) 

(3.22) 
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A A 

vi - v3 - 0 
T + 1  as q - + @ ,  

on 7 - 0, 
,. 

n 

v3 + 1 as 7 + QI. 

I t  is possible to define a streamfunction which would ensure 

(3.23) 

the continuity equation (3.20) is always satisfied; however in this 

case, in addition to the order of the momentum equation being increased, 

the coefflcients of the equations become considerably more complicated. 

Further, i t  does not appear possible to introduce a Howarth-Dorodnitsyn 

(Stewartson 1951, Moore 1951) like transformation which in the planar 

case considerably simplifies the governing equations. For this reason 

i t  was decided to seek a numerical solution to VI, v3 and T directly. 
A -  - 

Notice setting C - 0 reduces the system (3.20) - (3.23) to the planar 
problem, namely the ordinary-differential system 

(again subject to (3.23)). 

The variables 

T1 - T7, 

(3.24) 

(3.25) 

( 3 . 2 6 )  

(3.27) 
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were introduced, and the system ( 3 . 2 4 )  - ( 3 . 2 6 )  together with (3.27) 

were written as a system of first order ordinary differential equations, 

which were then approximated by second-order finite differences. The 

truncated system was then solved by means of Newton iteration. At each 

iteration level, the algebraic system was of block-diagonal form, with 

each block comprising 10x5 elements. 

Once the above solution was obtained, the system (3.20) - (3.23) 

was treated in much the same way, with a Crank-Nicolson approximation 

being used to approximate t derivatives (again the problem was treated 

as a system of first order equations in 7). In this way, the solution 

was extended forwards in f .  
I 

Fig. l a  shows the distribution of f-l ~3~ (7-0) with t ,  and 
I 

Fig. lb the corresponding distribution of T(7-0). These results 

are for M, - 2 . 8 ,  with fluid constants u - 0.72, y - 1.4. The 

r-lvg7 (7 -0)  r + 0, 

and then appears to (slowly) fall continuously as r increases. The 

T(7-0) distribution declines slightly from its planar value at t-0. 

distribution is singular in the planar limit as 

Results for M, - 3 . 8  (same fluid constants as above) are shown 
A A 

in Fig. 2a (r-lv3(7-0) distribution) and Fig. 2b (T(7-0) 

distribution); these suggest the same basic characteristics as the 

lower Mach number results. 

The limit as f + QI is of some interest. Although, as indicated 

earlier, the incompressible case in this limit is well documented, 

the particular details for the compressible case do not appear to 

have been described, although Stewartson (1964) speculates that a 

similar approach to the incompressible case is necessary. In the 

following sub-section we show this is indeed the case. 
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1 

3.3 The far downstream flow 

We find i t  convenient to reconsider the system (3.10) - (3.13) 

(together with (3.17)) when studying the limit of z + O D .  The 

incompressible work of Glauert and Lighthtll (1955), Stewartson (1955) 

and Bush (1976) suggests that two radial lengthscales are important 

in this limit, namely r - 0(1) and r - O(z9). Following these earlier 

works, we find I t  convenient to define the parameter 

(3.28) 

which is necessarily small as z + m. 

Guided partly by the incompressible< case, we expect the solution 

for r - 0(1) to take the following form 

(3.29a) 

(3.29b) 

(3.29~) 

where "barred" quantities are expected to be generally order one. 

Subsitution of (3.29) i n t o  (3.10) - (3.13) imedlately reveals t h e  

result (neglecting 0(1/f) terms) 

and 

(3.30) 

(3.31) 

t 

Integrating (3.30) yields 
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r ’  ( 3 . 3 2 )  

where is independent of r. Substitutlon of ( 3 . 3 2 )  into (3.31) yields 

To facilitate the solution to (3.33) we write 

- 
r - lnr, 

and so 

( 3 . 3 3 )  

( 3 . 3 4 )  

(3.35) 

This equation is further simplified by the use of a second transformation 

giving 

Consequent 1 y 

( 3 . 3 6 )  

( 3 . 3 7 )  

( 3 . 3 8 )  

where A 0  and Bo are independent of E. 

Before proceding further with this solution, we consider next the 

outer solution where - O ( 1 ) .  Guided by the above, and also again the 

corresponding incompressible results, we expect the solution to develop 

as 
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v3 - 1 + €Z3(;j) + 0(€2), 

where we have wr i t ten, 

T '  
0 

(3.39) 

( 3 . 4 0 )  

and also we have implemented freestream conditions on v3 and T. 

is to match correctly to (3.39), we must have (to If To(',{) 
leading order) 

A 0  + BO - iii2 k2(y-l)o = 1, (3.41) 

I ( i t  is now clear that although the first term on the right-hand-side 

of (3.38) is notionally 0 ( t 2 ) ,  its inclusion is essential for a 

correct matching process, as is the second term). Note that we have used 

the result 

ii - - Inr as r + m .  ( 3 . 4 2 )  

The matching of ;3(r,f) 

i? - 1. 
with the outer solution is achieved by setting 

The O ( E )  corrections to (3.39) are then given by 

and 

(3.43) 

( 3 . 4 4 )  
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Both and e may be regarded as forms of "optimal coordinates". as 

their use is essential for the correct matching of solutions. 

To complete the problem, we now require to specify conditions on 

r - 1. In the insulated wall case, to which the bulk of this paper  is 

devoted, we require 

and so A 0  - 0, 
and this implies that 

which implies 

( 3 . 4 5 )  

( 3 . 4 6 )  

( 3 . 4 7 )  

( 3 . 4 8 )  

(on account of (3.32)). 

These asymptotic results are indicated as broken lines on 

Figs. 1 and 2 for comparison with the full, numerical results; the 

agreement is satisfactorily given the relative "largeness" of the 

small parameter E .  

If on the other hand the surface of the cylinder is heated or 

cooled, f.e. Tlr,l is speclfied ( t o  be Tw say), then we must have 

and so to leading order 

A 0  - 1 + ijO(v-1)%2-Tw. 1 ( 3 . 5 0 )  
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81 vi ng 

together with, 

(3.51) 

( 3 . 5 2 )  

In the following section we turn our attention to the inviscid 

Instability of flows corresponding to the insulated wall class. 
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4. Inviscid disturbances 

4.1 Disturbance eauat ions 

We now seek to determine the effect of a sma 

on the basic flow described in the previous sect 

whether growth/instability can occur. We impose 

wave 1 engt h i s 

thickness and 

case .the para 

implies the d 

Spec i f ica 

1 amp1 itude disturbance 

on, to determine 

a disturbance whose 

generally comparable to that of the boundary layer 

therefore also of the body radius (O(a*)), in which 

mation can be fully justified; this 

ons are all inviscid. 

z station, we write 

le1 flow approx 

sturbance equat 

ly, at a fixed 

VI* - Gum* 

To(') + 6i(r) e i&Z-ct) 

I *  ia( Z-ct ) 
p* - prn R T, 1 + sp(r>e * *  * [  

(4.3) 

where 6 is some small (disturbance amplitude) parameter, 

t - (u,*/a*>t*, 
z - z*/a*, 

and so the Z - 0(1) scale is very much shorter than the z - 0(1) 



-19- 

- 
scale, a is the non-dtmenstonal spattal wevenumber, and c the 

the non-dimensional wavespeed, and 

(4.6) 

L. A 

where v3 and T are as defihed In Section 3. 

Substituting (4.1) - (4.4) into (1.1) - (1.4), (1.13), taking 

the O(6) terms with the highest order in R yields the following 

disturbance equattons 

- i5 1 -  1 -  - d  1 - t c p  + - + -  v + - vr 
T o  TO' TO 

+ twop + v dr (%) - 0, (4.7) 

(4.8) 

(4.9) 

(4.10) 

together with the dtsturbance equation of state 

(4.11) - - T  p 9 TO p + -. 
TO 

After some algebra the system reduces to the following two equations 
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(4.12) 

(4.13) 

I t  was shown in the previous section that the appropriate scale as 

z -B 0 is q (see (3.19b)) rather than r .  Consequently we find it  

convenient to use q however, rather than r, and also to introduce 

a scaled radial velocity component rp, and wavenumber CY by 

and so 

Equa:ions (4.14) and (4.15) may be comblned to give 

(4.14) 

(4.15) 

(4.16) 

This equation is very similar to the well-known planar inviscid 

equation (Lees and Lin 1946, Reshotko 1962, Mack 1984, for example), 

except for the Inclusion of the single curvature term, on the 

left-hand-side of the equation; notice that allowing -B 0 retrieves 
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the planar result.. 

On 'I = 0, we requtre 

(the impermeabtltty conditton). The second condttton is that 

(F is bounded as 'I + m. This ts achieved by taking the 

'I + OD Itmtt of (4.16), t.e. 

giving 

(4.17) 

(4.18) 

(4.19) 

where Kn(z) denotes the modified Bessel function of order n, 

argument 2 ,  and the stgn Is chosen such that the real part of the 

argument Is posttive to ensure boundedness as + a; pOD is a 

constant. Equation (4.19) also leads to 

p A 2  ia (l-c)K~(?a(l-&~(l-c)~]~(~ '+ ''I)) 
P -  

[1-&2(1-c)2] f 
(4.20) 

The etgenvalue problem (for the temporal case as considered here) 

I 
t 
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is then, for a given a, to find c subJect to boundedness as 9 + O D ,  

and such that the impermeability condition (4.17) is satisfied. 

Before carrying out a detailed numericel study of this above 

eigenvalue problem, we turn to study an important sufficiency condition 

relating to the existence of certain unstable eigensolutions. 
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5. The doubly neneralised inflex ion condition 

In the case of compressible planar flows, the existence of the 

so called generalised inflexion point, where (in our notation) 

. is of great importance, as shown originally by Lees and Lln (1946) and 

confirmed by Reshotko (1962), Mack (1984, 1987) for example. 

If condition (5.1) is satsified at some point v i ,  then there 

exists a neutral solution, with wavespeed c, such that 

provided TO - &,* ( ~ 0 - c ) ~  > 0, (5.3) 

for all 7. 

This is a sufficient condition for the existence of a so called 

neutral subsonic disturbance, i.e. for which 

(5.4) 

using the terminology described by Mack (1984), where sonic disturbances 

have 

c - I d / & ,  (5.5) 

and supersonic disturbances have 

c < 1 - I/&. ( 5 . 6 )  

The condition (5.1) has a further Important repurcussion, namely that 

a sufficient condition for the existence of an amp1 ified disturbance 

is that 
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at some 9 > 91 , where 91 is the point at which 

The question then arises, what is the effect of curvature on these 

important conditions? We address this question next. We take equation 

(4.16) as our starting point, and follow the general approach adopted 

in the past to tackle inflexional instabilities arising in planar 

compressible flows (eg. Mack 1984). although here the situation is 

more complicated because of the inclusion of curvature terms. 

Taking equation (4.16). dividing through by WO-c, and multiplying 

by cp* (where an asterisk denotes a complex conJugate) we obtain 

(5.9) 

(5.10) 

x - To - %*(WO-C)~. (5.11) 

If we now subtract the complex conjugate of (5.9) from (5.9) we 

obtain 

(5.12) 

After some algebra, this may be written as follows 

(5.13) 
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We now focus attention on the limit of the neutral state, i.e. if 

c - cr + iCi 

then ci -+ 0. ( 5 . 1 4 )  

We may write X* - x in this limit without any difficulty 

(assuming the wave is not given by either of (5.5), which we shall 

see Is outside of the scope of the following, anyway). However we exert 

some care in the treatment of the rlght hand-side of equation (5.13), 

which we now write as 

We now use the following arguments: ( I )  as ci -+ 0, the derivative 

of the term in parentheses on the left-hand-side of (5.15) is always 

zero, except possibly at the point, ri, where wo - c; 
( 1 1 )  the term inside the parentheses must be zero at the wall (r - 1). 
and asymptote to zero at infinity I f  the wave is subsonic; ( 1 1 1 )  the 

right-hand-side acts as a delta functlon at ri as ci -+ 0, unless 

or equivalently 

(5.16) 

(5.17) 

(note 

to avoid a finite jump in the term in parentheses on the left-hand-side 

X(r - ri) 9 TO). This condition is clearly required in order 

of (5.15), and the subsequent contradiction. Equation (5.16) is a 
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"doubly generaltsed inflexion conditton", and includes a curvature 

term, not present in planar studies. 

We thus see that (5.16) is a necessary and sufficient condition for 

the exlstence of so-called subsonic modes. In the following section 

we carry out a numerical study of (4.16); as we shall see, (5.16) gives 

us an extremely useful guide to the behavlour, nature, and exlstence of 

the various modes of instability present. 
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6. Sol ution of dts t urbance eaua t ton 

6.1 Numertcal method 

For the purposes of numerical solution, equations (4.14) and (4.15) 

were chosen (In preference to (4.16)). A fairly straightforward 

Runge-Kutta scheme was applied to this system, with the shoottng 

commencing at some suitably large value of q ,  with (4.19) and ( 4 . 2 0 ) ,  

and the computation procedtng Inwards, towards q-0. The Impermeability 

condition at 

c 

q = 0 was sattsfied by choosing the appropriate value of 

(by means of Newton's method). 

In a number of computations t t  was found advantageous to divert 

the computatton below the real 9 axts, in particular when two-ci 

was small (If In(c) < 0 thts procedure must be used). A stmtlar 

techntque has been (used by Mack (1965)' ustng a method based on that 

of Zaat (1958). 

6.2 Doubly neneral tsed infle xion Debt re SUI t s 

Before presenting details for the etgenvalue problem per se, defined 

in Sectton 4, we return brtefly to constder further results for the basic 

flow. 

inflexion points are likely to play an tmportant role in the stability 

of the flow. 

studied in Section 3.2, namely &, - 2.8 and P& - 3.8. In particular 

we are interested In the existence of doubly generalised inflexion 

po t nt s. 

I t  was shown in Section 5 how the so called doubly generaltsed 

Consequently we return to consider the two examples 

Fig. 3a shows the axial variation of posttion of the doubly 

generalised Inflexion points for M, - 2.8. The point r - 0 
corresponds to the leading edge of the cyltnder, and as such 

corresponds to the planar case (as a result of our basic assumptions). 

There are two particularly striking features to thts distribution: 

( I )  that these points occur in patrs and ( 1 1 )  there exists a crittcal 

value of 3 ,  downstream of which no such points extst. The upper 
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points are an extension of the generalised inflexion point found important 

in planar cases, whilst the lower points rise off the surface of the 

cylinder q - 0, to ultimately merge with the upper branch at 

I t  is remarkable how the doubly generallsed inflexion points 

disappear at such a small distance downstream of the leading edge. 

I t  was also shown in Section 5 how neutral solutions with 

r = 0.059. 

wave speed 

will occur, provided 

1 - < c < 1 + 1 /b*  

and so In Fig. 3b w e  show the axia 

M, - 2.8. Because of the restrict 

inflexional modes of instability w 

implying that such modes will comp 

distribution of wo(qi) for 

on (6.2) i t  is seen that subsonic 

I 1  only occur for 0 ( r < 0.047, 

etely disappear at Just a distance 

- 

approximately 0.0022 x Re body radit downstream of the leading edge 

(although other modes types are certainly possible); consequently in 

this case we expect this mode will disappear before the doubly 

generalised inflexion points have merged. There are certain similarities 

here with the effect of cooling of planar boundary layers (Lees 1947, 

Mack 1987). which causes a similar effect on generalised inflexion points 

We next turn our attention to results for the higher Mach number 

considered previously, H, - 3.8. Figure 3c shows the axial variation 

of the doubly generalised inflexion points in this case; the general 

characteristics are the same as those of Fig. 3a, except the range of 

r for which such points exist is increased. The corresponding 

distribution of wo(qi) is shown in Fig. 3d; this too is similar to 
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the corresponding & - 2.8 distribution shown in Fig. 3b. In the case 

of H, = 3.8, Fig. 3d indicates that neutral subsonic inflexional modes 

will disappear a distance approximately 0.013xRe body radii downstream of 

the leading edge. 

Guided by the above observations, we now turn our attention to the 

eigenvalue problem for the two cases M, = 2.8 and H, - 3.8. 
6.3 Growth rate results 

Figure 4a shows the variation of ci with a (where c = cr + i ci), 

for the case FI, - 2.8, at f - 0 (and hence corresponds to a planar 

example). The corresponding results for cr are shown in Fig. 4b. Here, 

and in all results to follow, neutral points are denoted by a cross. 

These results (which are typical of previous planar results - see for 
example Mack 1987) show two distinct unstable modes. The first (to be 

referred to as mode I )  originates as a sonic neutral dlsturbance (with 

ci - 0, cr - 1 - I/&) at a - 0, and terminates as a neutral inflexional 

subsonic mode at a = 0.1, where cr - w ( q  - qi) = 0.66; this mode in 

fact continues, becoming a decaying mode, with ci < 0, although we 

shall mainly concentrate our attention on growing/neutral modes). 

The second mode (to be referred to as mode 1 1 )  originates at 

(Y = 0.4 as a subsonic neutral mode with ci = 0, cr - 1 (this may 

be regarded as a special case of an inflexional mode, with the 

general ised inflexion point occuring In the freestream). This 

mode then terminates at a = 1.13 as a (second) neutral subsonic 

inflexional instability (and at values of a greater than this 

value continues as a decaying mode, with ci < 0). 

Although other modes of instability undoubtedly exist at this Mach 

number, these have considerably smaller growth rates than modes I and 

1 1  shown here, and are subsequently much less important from a practical 
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point of view. Note that since the (temporal) growth rate is act, 

mode 1 1  is the most important. 

We now turn to results incorporating the effects of curvature. 

Fig. 4c and Fig. 4d show distributions of cr and ci (respectively). 

with a (for H, - 2 . 8 ) ,  at f - 0.02. Although the qualitative 

features resemble those of the f - 0 case, the maximum amplitude of 

the growth rates is seen to be considerably reduced (in spite of the 

smallness of f ) ,  particularly that of mode 1 .  

Moving further down the axis of the cylinder, to f = 0.04, Figs. 

4e (ci distribution) and 4f (cr distribution) indicate that mode 1 has 

practically disappeared, whilst the maximum amplitude of mode I 1  is now 

significantly diminished, termlnating (at a subsonic inflexional neutral 

point) at quite a large value of a (= 2 . 6 5 ) ,  although over much of 

the range of Q ,  this mode has exceedingly small growth rates. 

Following our coments in the previous subsection regarding wo(qi) 

dropp i ng be 1 ow we expect mode I to completely disappear at 

f = 0.047 for this choice of H,. As a consequence, the next set of 

results (at f - 0.05) presented in Fig. 4g (ci) and Fig. 4h (c,) shows 

just mode 1 1 ,  which itself exhibits a further reduction in growth rate. 

This mode still originates as a neutral mode with cr - 1 (at CY 2.45); 

unfortunately our computations did not indicate a clear neutral 

solution at an upper value of Q. This was due to the exceedingly small 

growth rates encountered, which were typically O ( l O - l o ) ,  and hence 

were comparable with the round-off associated with the computation. (In 

the regime of larger Q and very small growth rates, i t  was 

found to be most essential to deform the integration contour in the 

numerical scheme, as described in Section ( 6 . 1 ) ,  in order to maintain 

1 -1/w, 

'\ 
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numerlcal accuracy.) If a neutral point exists, as seems likely, i t  must 

be of the neutral supersonic class 

the absence of any doubly generalised inflexion points at this value 

of f. 

(ci - 0, C y  < 1 - l /k)  because of 

As a final example of the P&, 9 2.8 flow, we show results for 

- 0.2 in Figs. 4i (cj) and 4J (cy). These indicate qualitative 

similarity with the previous set of results; however the maximum growth 

rate Is reduced by approximately an order of magnitude. Again, 

unfortunately, poslt Ive identification of an upper neutral point was 

not possible, due to the difficulties with tiny growth rates 

encountered at larger values of a. We conclude, however , that 

curvature has important (and profound) effects: ( 1 )  annihilation of mode I 

and ( i i )  substantlal reduction of the growth rate of mode I 1  (although 

the range of a over which this unstable mode extsts is Increased 

quite significantly). 

We next turn our attentlon to results for - 3.8, and Figs. Sa 

and 5b show ci and cr distributions (respectively) with a, for 

the particular case 5-0. This corresponds to the planar case as 

computed previously (Mack 198.7 for example) and thus provides a 

useful check on the accuracy of the present overall scheme, (which 

is seen to be entirely satlsfactory). 

corresponding & - 2.8 results (Figs. 4a, 4b), the importance of 

mode 1 1  is seen to be slgniflcantly increased (although the growth 

rate of mode I is increased also). Generally, the H, - 3.8 
distributions qualitively resemble the corresponding 

d i st r i but i ons . 

When'compared with the 

M, = 2.8 

At f 9 0.05 (with & - 3 . 8 ) ,  we see in Figs. 5c (ci distribution) 

and 5d 

maximum growth rate, when compared with the 5-0 results. Further 

(cr distribution) there is an approxlmate halving of the 
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downstream, at f - 0.10 (Figs. 5e, 5f) mode I has almost 

disappeared, whilst mode I 1  has suffered a further depletion of 

maximum growth rate. 

From our observations made in Section ( 6 . 2 ) ,  we expect that mode I 

will completely disappear at f = 0.013 (where cr - wo(q - qi) - 
1 - l / k ) ;  this will also be an important location for the upper 

neutral point of mode 1 1 ,  which for f ( 0.013 is of the subsonic 

inflexlonal kind. As noted earlier, for the previous M, considered, 

growth rates in this regime were extremely small, and so no firm 

conclusions on the behaviour of this mode in this region were possible. 

Fortunately, although the growth rates in this critical region at 

M, - 3.8 are small, they are nonetheless significantly larger than 

at the lower Mach number. 

Figure 5g shows the Jocal variation of ci with a at - 0.112 
(just below the critlcal value). Mode 1 1  is clearly seen to become a 

damped mode at a = 0.85, with Icil reaching a maximum at a = 0.93, 

and then decreases. Unfortunately, no firm conclusions are 

possible regarding the ultimate behaviour of ci at large 

values of a, due to the smallness of Icil. 

Figure 5h shows the distribution of ci in the same critical 

region of a, at f - 0.114 (slightly above the crit lcal value of 
f). I t  now appears that the growing mode I 1  now terminates at 

a = 0.94, as a supersonic neutral mode, and does not continue as a 

damDed mode. Instead, a further (supersonic) neutral mode has already 

appeared (at a = 0.88) and this is then the origin of a damped mode, 

which has a maxfmum value of tcit at a = 0.95; tcil then decreases, 

towards zero, and again because of its ultimate smallness, no 

conclusions regarding its behaviour at larger values of a are possible 
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dencc of another unstable mode, 

because of its very small growth rate 

ly, there was some cv 

around Q = 1.52, but 

possible to be completely categorical about this; its 

growth rate was also too small to be seen on the scale of Fig. 5h. 

Thus In this case we see the presence of possibly three (supersonic) 

neutral points in this regime. 

Figure 51 detalls the variation of ci in the crucial Q region, 

for the location r - 0.116. Again, (growing) mode 1 1  is seen to 

terminate at a supersonic neutral point, this time located at a = 1. 

A further supersonic neutral point exists, originating at Q = 0.9 

which then provides the start for a decaying mode; when compared to the 

corresponding 

is seen to be reduced. Further, this mode now seems to terminate 

at another neutral point (at a = 1.48). Yet another neutral point 

exists at a = 1.40, which then provides the start of a second 

unstable mode (although the growth rate of this mode was so small to 

be bearly visible on Fig. 51); a total of four supersonic neutral 

points are thus observed in this region of Q. 

r - 0.114 mode, the decay rate of this particular mode 

Figure 5J  shows the ci distribution at C - 0.118 in the same 
general region of a. When compared with the prevlous results, a 

further change to the qualitative picture Is seen. Here, the original 

mode 1 1  has merged with the second unstable mode. Just two neutral 

points remain in this region, at Q = 0.93 and Q = 1.35, which are 

associated with the start and the terminus of the decaying mode (which 

generally has a significantly reduced Icii compared to the 

previous results). The ultimate behaviour of the growing mode with 

Q remains unclear, due to the smallness of Icil. 

I t  is interesting to note that when two modes were present (for a 

given value of a), both modes had values of cr that were 

practically indistinguishable. Further, there was no difficulty in 
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calculating accurate values of cy, even at large values of CY. 

f - 0.2, the decaying mode has Moving further downstream to 

disappeared completely, and ci and cr distributions over a broad 

range of a are shown in Flgs. 5k and 5P respecti 

with the Fig. 5e results, the mode 1 1  growth rates 

appreciably reduced; the ultimate behaviour of I C  

,ely. When compared 

are quite 

I at large values 

of CY remains unclear. 

Further downstream still, at f - 1 0, results (ci shown in 

Fig. Sm, cr shown in Flg. 5n) are qua itively similar to those at 

Z - 0.2, except that the maximum value of ci is significantly 

diminished, and occurs at a rather larger value of CY (as does the 

origin of this mode which occurs at a = 0.72, compared with a = 0.4 

in the case of 1 - 0.2). The larger a behaviour of this mode 

is again unclear, due to the reasons described above. 

In the following section we turn to consider a number of general 

conclusions and points raised by this work. 
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7.  c onc 1 us 1 o ns 

In this paper the supersonic flow over a thin straight circular 

cylinder has been investigated. The basic boundary layer flow has 

been obtained, and the inviscid stabillty of the flow has been 

studied. A condition on the basic flow for the existence of so called 

subsonic inflexional neutral modes of instability has been derived, 

and is found to be an extension of the generalised inflexional 

condition relevant to planar flows. 

The effect of body surface curvature is seen to inmediately (and 

significantly) reduce the importance of the "first mode" of inviscid 

instability, which Is seen to completely disappear at what could be 

a comparatively short distance down the axis of the cylinder (by 

about 0.0022 x Re body radii at I&, - 2.8, and by about 0.013xRe 

body radii at H, - 3.8). 
The maximum growth rate of the "second mode" of inviscid 

instability also suffers a substantial reduction at locations 

increasingly further down the axis of the cylinder, although the 

evidence is that i t  does not disappear completely. 

There are certain similarities here with the effect of cooling 

a planar boundary layer (Hack 1984, 1987, for exmaple), which can also 

cause the first mode to disappear completely (cooling also causes the 

formation of a second generalised inflexion point, which with a 

progressive reduction In wall temperature eventually coalesces 

with the first generalised Inflexion point). However the effect of 

cooling is to increase the amplification rate of the second mode (in 

contrast to our results featuring curvature). 

I t  is particularly interesting to note that although inviscid 

modes of instabi 1 ity are generally regarded as more important/ 

unstable than viscous modes of instability in the case of supersonic 
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planar flows., the work of Duck and Hall (1988a,b) on viscous 

axisymmetric flows indicates that a reduction in body radius 

(equivalent to a further downstream location in our context) 

causes an increase in amplification rate. 

possib e that with axisymnetric flows, reg 

instab lity is dominant. 

I t  is to be hoped that this study will 

study of flows over further and more pract 

cones. One important omission to the phys 

Thus i t  is 

mes may ex 

entirely 

st where viscous 

provide a basis for the 

cal geometries, such as 

cs of that problem, which 

must ultimately be resolved, is the exclusion of any shock waves in 

the basic flow (however this may be justified by the restriction of 

thinness), although previous works on planar flows (cited throughout 

this paper) all have thls same omtsslon. I t  ts also 

hoped that these results will provide material for comparison with 

finite Reynolds number computations. 
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